显示用于误差校正的小型神经网络(NNS)可改善经典通道代码并解决通道模型更改。我们通过多次使用相同的NN使用相同的NN扩展了任何此类结构的代码维度,这些NN与外部经典代码串行串联。我们设计具有相同网络参数的NN,其中每个REED - Solomon CodeWord符号都是对其他NN的输入。与小型神经代码相比,增加了加斯噪声通道的块误差概率的显着改善,以及通道模型变化的稳健性。
translated by 谷歌翻译
通过考虑一个嘈杂的测量值是用于安全源重建的相关随机变量的远程源,可以扩展使用多个终端的安全源编码的问题。该问题的主要添加包括1)所有终端非本质都观察到远程源的嘈杂测量; 2)所有合法终端都可以使用私钥; 3)编码器和解码器之间的公共通信链接是限制的; 4)根据编码器输入测量了窃听器的保密泄漏,而与远程源测量了隐私泄漏。在安全性,隐私,通信和失真约束下,使用私钥,远程源和解码器侧信息的有损源编码问题的确切速率区域的特征是。通过用可靠性约束替换失真约束,我们还可以获得无损案例的确切速率区域。此外,确定了标量离散时间高斯源和测量通道的损耗率区域。
translated by 谷歌翻译
新一代头戴式显示器,如VR和AR眼镜,正在进入市场,具有集成的眼踪,预计将能够在许多应用中启用人机交互的新方法。然而,由于眼睛运动属性包含生物信息,因此必须正确处理隐私问题。最近已经应用于从这种显示器获得的眼部移动数据等差分隐私机制等隐私保存技术。标准差异隐私机制;然而,由于眼睛运动观测之间的时间相关性而易受伤害。在这项工作中,我们提出了一种新颖的基于转换编码的差分隐私机制,以进一步调整它对眼球运动特征数据的统计数据并比较各种低复杂性方法。我们扩展了傅立叶扰动算法,这是一个差异隐私机制,并在证明中纠正了缩放错误。此外,除了查询敏感性之外,我们还说明了对样本相关性的显着还原,这提供了在眼睛跟踪文献中提供了最佳的效用隐私权衡。我们的结果提供了明显高的隐私,而在隐藏个人标识符的同时,在分类准确性损失的情况下提供了明显高的隐私。
translated by 谷歌翻译
Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the recent deep learning (DL) methodologies trained on the labeled data from the same machine, the classification accuracy significantly deteriorates when one or few conditions are altered. Furthermore, their performance suffers significantly or may entirely fail when they are tested on another machine with entirely different healthy and faulty signal patterns. To address this need, in this pilot study, we propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics. To accomplish this objective, a 1D Operational Generative Adversarial Network (Op-GAN) first characterizes the transition between normal and fault vibration signals of (a) source machine(s) under various conditions, sensor parameters, and fault types. Then for a target machine, the potential faulty signals can be generated, and over its actual healthy and synthesized faulty signals, a compact, and lightweight 1D Self-ONN fault detector can then be trained to detect the real faulty condition in real time whenever it occurs. To validate the proposed approach, a new benchmark dataset is created using two different motors working under different conditions and sensor locations. Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.
translated by 谷歌翻译
Basecalling is an essential step in nanopore sequencing analysis where the raw signals of nanopore sequencers are converted into nucleotide sequences, i.e., reads. State-of-the-art basecallers employ complex deep learning models to achieve high basecalling accuracy. This makes basecalling computationally-inefficient and memory-hungry; bottlenecking the entire genome analysis pipeline. However, for many applications, the majority of reads do no match the reference genome of interest (i.e., target reference) and thus are discarded in later steps in the genomics pipeline, wasting the basecalling computation. To overcome this issue, we propose TargetCall, the first fast and widely-applicable pre-basecalling filter to eliminate the wasted computation in basecalling. TargetCall's key idea is to discard reads that will not match the target reference (i.e., off-target reads) prior to basecalling. TargetCall consists of two main components: (1) LightCall, a lightweight neural network basecaller that produces noisy reads; and (2) Similarity Check, which labels each of these noisy reads as on-target or off-target by matching them to the target reference. TargetCall filters out all off-target reads before basecalling; and the highly-accurate but slow basecalling is performed only on the raw signals whose noisy reads are labeled as on-target. Our thorough experimental evaluations using both real and simulated data show that TargetCall 1) improves the end-to-end basecalling performance of the state-of-the-art basecaller by 3.31x while maintaining high (98.88%) sensitivity in keeping on-target reads, 2) maintains high accuracy in downstream analysis, 3) precisely filters out up to 94.71% of off-target reads, and 4) achieves better performance, sensitivity, and generality compared to prior works. We freely open-source TargetCall at https://github.com/CMU-SAFARI/TargetCall.
translated by 谷歌翻译
To achieve autonomy in a priori unknown real-world scenarios, agents should be able to: i) act from high-dimensional sensory observations (e.g., images), ii) learn from past experience to adapt and improve, and iii) be capable of long horizon planning. Classical planning algorithms (e.g. PRM, RRT) are proficient at handling long-horizon planning. Deep learning based methods in turn can provide the necessary representations to address the others, by modeling statistical contingencies between observations. In this direction, we introduce a general-purpose planning algorithm called PALMER that combines classical sampling-based planning algorithms with learning-based perceptual representations. For training these perceptual representations, we combine Q-learning with contrastive representation learning to create a latent space where the distance between the embeddings of two states captures how easily an optimal policy can traverse between them. For planning with these perceptual representations, we re-purpose classical sampling-based planning algorithms to retrieve previously observed trajectory segments from a replay buffer and restitch them into approximately optimal paths that connect any given pair of start and goal states. This creates a tight feedback loop between representation learning, memory, reinforcement learning, and sampling-based planning. The end result is an experiential framework for long-horizon planning that is significantly more robust and sample efficient compared to existing methods.
translated by 谷歌翻译
Gathering properly labelled, adequately rich, and case-specific data for successfully training a data-driven or hybrid model for structural health monitoring (SHM) applications is a challenging task. We posit that a Transfer Learning (TL) method that utilizes available data in any relevant source domain and directly applies to the target domain through domain adaptation can provide substantial remedies to address this issue. Accordingly, we present a novel TL method that differentiates between the source's no-damage and damage cases and utilizes a domain adaptation (DA) technique. The DA module transfers the accumulated knowledge in contrasting no-damage and damage cases in the source domain to the target domain, given only the target's no-damage case. High-dimensional features allow employing signal processing domain knowledge to devise a generalizable DA approach. The Generative Adversarial Network (GAN) architecture is adopted for learning since its optimization process accommodates high-dimensional inputs in a zero-shot setting. At the same time, its training objective conforms seamlessly with the case of no-damage and damage data in SHM since its discriminator network differentiates between real (no damage) and fake (possibly unseen damage) data. An extensive set of experimental results demonstrates the method's success in transferring knowledge on differences between no-damage and damage cases across three strongly heterogeneous independent target structures. The area under the Receiver Operating Characteristics curves (Area Under the Curve - AUC) is used to evaluate the differentiation between no-damage and damage cases in the target domain, reaching values as high as 0.95. With no-damage and damage cases discerned from each other, zero-shot structural damage detection is carried out. The mean F1 scores for all damages in the three independent datasets are 0.978, 0.992, and 0.975.
translated by 谷歌翻译
Resistive Random-Access Memory (RRAM) is well-suited to accelerate neural network (NN) workloads as RRAM-based Processing-in-Memory (PIM) architectures natively support highly-parallel multiply-accumulate (MAC) operations that form the backbone of most NN workloads. Unfortunately, NN workloads such as transformers require support for non-MAC operations (e.g., softmax) that RRAM cannot provide natively. Consequently, state-of-the-art works either integrate additional digital logic circuits to support the non-MAC operations or offload the non-MAC operations to CPU/GPU, resulting in significant performance and energy efficiency overheads due to data movement. In this work, we propose NEON, a novel compiler optimization to enable the end-to-end execution of the NN workload in RRAM. The key idea of NEON is to transform each non-MAC operation into a lightweight yet highly-accurate neural network. Utilizing neural networks to approximate the non-MAC operations provides two advantages: 1) We can exploit the key strength of RRAM, i.e., highly-parallel MAC operation, to flexibly and efficiently execute non-MAC operations in memory. 2) We can simplify RRAM's microarchitecture by eliminating the additional digital logic circuits while reducing the data movement overheads. Acceleration of the non-MAC operations in memory enables NEON to achieve a 2.28x speedup compared to an idealized digital logic-based RRAM. We analyze the trade-offs associated with the transformation and demonstrate feasible use cases for NEON across different substrates.
translated by 谷歌翻译
A new development in NLP is the construction of hyperbolic word embeddings. As opposed to their Euclidean counterparts, hyperbolic embeddings are represented not by vectors, but by points in hyperbolic space. This makes the most common basic scheme for constructing document representations, namely the averaging of word vectors, meaningless in the hyperbolic setting. We reinterpret the vector mean as the centroid of the points represented by the vectors, and investigate various hyperbolic centroid schemes and their effectiveness at text classification.
translated by 谷歌翻译
Facial recognition is fundamental for a wide variety of security systems operating in real-time applications. In video surveillance based face recognition, face images are typically captured over multiple frames in uncontrolled conditions; where head pose, illumination, shadowing, motion blur and focus change over the sequence. We can generalize that the three fundamental operations involved in the facial recognition tasks: face detection, face alignment and face recognition. This study presents comparative benchmark tables for the state-of-art face recognition methods by testing them with same backbone architecture in order to focus only on the face recognition solution instead of network architecture. For this purpose, we constructed a video surveillance dataset of face IDs that has high age variance, intra-class variance (face make-up, beard, etc.) with native surveillance facial imagery data for evaluation. On the other hand, this work discovers the best recognition methods for different conditions like non-masked faces, masked faces, and faces with glasses.
translated by 谷歌翻译